Predicting long bone loading from cross-sectional geometry.
نویسندگان
چکیده
Long bone loading histories are commonly evaluated using a beam model by calculating cross-sectional second moments of areas (SMAs). Without in vivo strain data, SMA analyses commonly make two explicit or implicit assumptions. First, while it has long been known that axial compression superimposed on bending shifts neutral axes away from cross-sectional area centroids, most analyses assume that cross-sectional properties calculated through the area centroid approximate cross-sectional strength. Second, the orientation of maximum bending rigidity is often assumed to reflect the orientation of peak or habitual bending forces the bone experiences. These assumptions are tested in sheep in which rosette strain gauges mounted at three locations around the tibia and metatarsal midshafts measured in vivo strains during treadmill running at 1.5 m/sec. Calculated normal strain distributions confirm that the neutral axis of bending does not run through the midshaft centroid. In these animals, orientations of the principal centroidal axes around which maximum SMAs (Imax) are calculated are not in the same planes in which the bones experienced bending. Cross-sectional properties calculated using centroidal axes have substantial differences in magnitude (up to 55%) but high correlations in pattern compared to cross-sectional properties calculated around experimentally determined neutral axes. Thus interindividual comparisons of cross-sectional properties calculated from centroidal axes may be useful in terms of pattern, but are subject to high errors in terms of absolute values. In addition, cross-sectional properties do not necessarily provide reliable data on the orientations of loads to which bones are subjected.
منابع مشابه
Predicting the bending properties of long bones: Insights from an experimental mouse model.
OBJECTIVES Analyses of bone cross-sectional geometry are frequently used by anthropologists and paleontologists to infer the loading histories of past populations. To address some underlying assumptions, we investigated the relative roles of genetics and exercise on bone cross-sectional geometry and bending mechanics in three mouse strains: high bone density (C3H/He), low bone density (C57BL/6)...
متن کاملArticular area responses to mechanical loading: effects of exercise, age, and skeletal location.
How reliable are reconstructions of body mass and joint function based on articular surface areas? While the dynamic relationship between mechanical loading and cross-sectional geometry in long bones is well-established, the effect of loading on the subchondral articular surface area of epiphyses (hereafter, articular surface area, or ASA) has not been experimentally tested. The degree to which...
متن کاملIn vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice.
Whole bone morphology, cortical geometry, and tissue material properties modulate skeletal stresses and strains that in turn influence skeletal physiology and remodeling. Understanding how bone stiffness, the relationship between applied load and tissue strain, is regulated by developmental changes in bone structure and tissue material properties is important in implementing biophysical strateg...
متن کاملThe aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the eff...
متن کاملSkeletal strain patterns and growth in the emu hindlimb during ontogeny.
Most studies examining changes in mechanical performance in animals across size have typically focused on inter-specific comparisons across large size ranges. Scale effects, however, can also have important consequences in vertebrates as they increase in size and mass during ontogeny. The goal of this study was to examine how growth and development in the emu (Dromaius novaehollandiae) hindlimb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physical anthropology
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2004